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Abstract

Large Language Models (LLMs) have become essential across various fields, yet their
reliance on sensitive data raises privacy and security concerns. Previous research has
explored hardware-based Trusted Execution Environments (TEEs) to isolate compu-
tations and protect against untrusted infrastructures, but such approaches often suf-
fer significant performance overhead and require extensive infrastructure modifications.
However, the extent to which TEEs can efficiently handle LLMs, like those with hun-
dreds of millions of parameters, remains underexplored—creating a gap in our under-
standing of the trade-offs between security and speed. In this thesis, we address this gap
by investigating the feasibility of running a 110million-parameter BERT model only on
AMD SEV-SNP, a VM-based TEE technology designed to encrypt memory and shield
computations from adversaries. Through systematic experiments varying batch sizes
and epochs, we find that memory encryption imposes only about 10–16% degradation
on CPU-based training and inference—significantly lower than overheads reported in
process-level enclaves—while acknowledging unresolved challenges like data poisoning
and adversarial inputs. These findings highlight TEEs’ practicality for confidential LLM
training on CPUs, offering critical security guarantees at manageable cost, and they lay
the groundwork for future exploration of even larger, GPU-accelerated models.
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Chapter 1

Introduction

Recent advances in artificial intelligence (AI) have led to its adoption in various in-
dustrial and academic settings, yet privacy and security concerns continue to limit its
broader deployment. Multiple studies suggest that organizations employing AI-driven
technologies can achieve significant gains in productivity, often cited between 15 to 40
percent [1], [2]. However, the risks of data leakage and unauthorized model extrac-
tion have forced many companies to develop and train AI models (or tools) in-house
using secure protocols such as federated learning, differential privacy, homomorphic
encryption, Trusted Execution Environments (TEEs) and many more. These proto-
cols (frameworks) help ensure end-to-end confidentiality across the model lifecycles
stages—including data collection, training, validation, deployment, and inference—but
can introduce computational overhead, a lot of complexity and even demand change in
infrastructure [3]–[6].

Ensuring privacy throughout the entire AI model lifecycle remains a significant chal-
lenge. During training, controlling and encrypting model access to data is essential to
prevent leakage and theft of sensitive information, such as model weights that could be
stolen or tampered with [7]. Each phase requires strict security strategies, which add
complexity and time to maintain robust privacy standards. Integrating TEEs into AI
workflows enhances security by isolating sensitive data and computations in hardware-
based enclaves. During data ingestion, secure transport protocols like TLS encrypt data
in transit [8], while TEEs process this data securely to prevent unauthorized access. In
high-security ML settings, TEEs (e.g., Intel TDX or AMD SEV-SNP) isolate sensitive
computations during preprocessing and training, ensuring that only authorized code
runs via attestation protocols. During validation and testing, TEEs protect proprietary
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test data and intermediate results, and in deployment, they shield the model against
reverse engineering or unauthorized extraction of weights and architecture.

Sensitive data must be protected at all stages to prevent unauthorized access or leak-
age [6], [7]. Remote attestation is employed to verify that the deployed software (in-
cluding the model) matches the expected, untampered configuration, thereby providing
verifiable evidence that the secure setup is in place [9]. Finally, during inference, TEEs
maintain the confidentiality of sensitive input data and output results by processing
them within a hardware-isolated enclave—a critical feature in sectors such as health-
care and finance where data privacy is the most important [6], [7].

Hardware companies are beginning to integrate such secure capabilities directly into
their products. For example, NVIDIA’s H100 Tensor Core [10] offers hardware-based
isolation for secure data and code processing, Intel incorporates TEEs through tech-
nologies like Software Guard Extensions (SGX) [11] and Trust Domain Extensions
(TDX) [12], and AMD employs Secure Encrypted Virtualization (SEV) [13] to provide
hardware-based memory encryption for virtual machines.

1.1 Research Questions

This thesis seeks to investigate how TEEs can be effectively utilized to provide secu-
rity for Large Language Models in centralized environments. By examining both the
theoretical and practical aspects of TEE deployment, we aim to identify their benefits,
limitations, and performance implications, with a focus on maintaining efficiency while
ensuring robust data protection.

• RQ1: What specific components of the AI model lifecycle (e.g. training, fine-
tuning, inference) are most vulnerable to security breaches, and how effectively
can TEEs protect each phase?

• RQ2: How do the security guarantees provided by TEEs impact the complexity
of implementing and maintaining them within AI model deployment systems?

• RQ3: What are the types of attacks that TEEs remain vulnerable to, even with
current security mechanisms?

• RQ4: What is an effective methodology for evaluating the security and perfor-
mance of each component in the AI model lifecycle?

• RQ5: What trade-offs exist between security and performance in TEE-enabled
LLM deployments, and how can these be optimized?

2



1.2 Thesis Structure

1.2 Thesis Structure

Chapter 2 provides the necessary background to understand the topics of this thesis,
covering Machine Learning, LLMs, TEEs, and related architectural concepts. Chapter 3
defines the AI model lifecycle and details the types of threats it is exposed to, identifying
which ones can be mitigated by a TEE while providing a comprehensive overview of the
security landscape. In this chapter, we conclude with an in-depth discussion on which
phases are the most vulnerable to threats and how TEEs either help or fall short in
defending against these attacks. Chapter 4 describes the experiment design. Chapter 5
covers the implementation of the experiment design. Chapter 6 analyzes and compares
the experimental outcomes of the implementation and setup with existing literature,
focusing on the overhead and added complexities that TEEs introduce into the AI
model lifecycle. Finally, Chapter 7 points to the answers of the research questions and
potential directions for future work.

3





Chapter 2

Background

This chapter offers an overview of the key technologies and concepts behind secure
computing systems and large language models(LLM). It covers the evolution of TEEs in
CPU and GPU architectures, focusing on their role in protecting sensitive computations
and data. It also introduces fundamental machine learning paradigms as well as various
Transformer architectures used in language modelling. Together, these topics provide
essential context for the analysis and discussions in this thesis, and for understanding
the integration of secure computing and AI models.

2.1 Trusted Execution Environments

While traditionally implemented in CPUs, TEEs have also been integrated into GPUs
(e.g., NVIDIA’s H100 and H200) to expand the role of secure (confidential) comput-
ing. TEEs can operate at either the process level (e.g., Intel SGX, ARM TrustZone)
or the VM level (e.g., Intel TDX, AMD SEV-SNP). In the process-based approach,
only specific application processes or threads are isolated within protected enclaves,
whereas VM-based TEEs extend the trust boundary to the entire virtual machine (in-
cluding the OS and all running applications). VM-based TEEs are increasingly relevant
for large-memory, containerized, or virtualized deployments—especially when combined
with GPU TEEs for high-performance tasks [14]–[25].

A TEE enforces security guarantees by leveraging hardware-based architectural features
such as specialized instructions, memory encryption, and fine-grained access control [14].
With GPU integration, TEEs now enable secure execution of high-performance work-
loads, ensuring data confidentiality even in untrusted environments. For instance, GPU-
based TEEs allow organizations to securely perform computations like AI inference or
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model training on cloud-hosted GPUs without exposing raw data to the cloud provider.
NVIDIA’s H100 Confidential Computing feature, for example, encrypts AI workloads
during processing so that even the cloud provider cannot access the data. When an
application requests a secure enclave (Intel’s terminology) or a secure world (ARM’s
terminology), the hardware sets up a protected memory region inaccessible to other
processes and privileged software, including the operating system and hypervisor [16].
Malicious software running outside the TEE cannot read or modify the data inside it,
even with elevated privileges [14].

The main goals of TEEs include:

1. Confidentiality – Ensuring data processed within the TEE remains hidden from
external entities [18].

2. Integrity – Guaranteeing that the code and data inside the TEE have not been
tampered with [15].

3. Attestation – Allowing a remote party to verify the genuineness of the TEE and
the code running within it [19].

Attestation involves generating a measurement (hash) of the loaded code/data, signed
with a hardware-provisioned key [20]. The verifier checks this signature against a trusted
authority (e.g., the hardware vendor’s attestation service) to confirm that the TEE is
genuine and unaltered [19]. In cloud or distributed environments, remote attestation is
critical for ensuring that sensitive workloads are executed in a legitimate TEE.

2.1.1 Use Cases
Healthcare: TEEs help protect patient data during analytics or when records are
shared among facilities, aiding compliance with regulations such as HIPAA. They also
prevent privileged insiders or compromised hypervisors from inspecting sensitive data [26],
[27].

Intellectual Property (IP) Protection: Proprietary algorithms, advanced analytics scripts,
or machine learning models can be kept in a secure enclave, mitigating risks of reverse
engineering or unauthorized copying [28].

Digital Rights Management (DRM): TEEs can store decryption keys and usage poli-
cies in secure hardware, curbing the risk of unauthorized content reproduction and
piracy [29].

6
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Financial Services: Banks and financial institutions handling high-value transactions
use TEEs to isolate account data and transactional logic, strengthening fraud preven-
tion [30].

Privacy-Sensitive Applications: TEEs protect personal information (e.g., biometric
credentials) by limiting access to specially designated secure zones in the processor [31].

AI Workloads: With the rise of confidential computing in cloud environments, TEEs
enable confidentiality-preserving training and inference of machine learning models.
This allows organizations to leverage high-performance cloud resources (e.g., GPU-
based TEEs) without exposing their raw data to potentially untrusted infrastructure
providers [28]–[53].

2.1.2 Process-Based TEEs
Intel SGX
Intel Software Guard Extensions (SGX) is a CPU-based TEE that enables enclaves, pro-
tected memory regions isolated from the operating system [14], [54]. Early implementa-
tions featured a relatively small Enclave Page Cache (EPC) of about 128 MB of phys-
ically protected memory, with 90–94 MB typically usable by applications [14]. Large
AI models often exceed these constraints, and while newer architectures support paging
mechanisms, frequent memory swaps increase latency under heavy workloads [14], [55].
Because SGX primarily targets application-level isolation, its throughput is bounded by
CPU memory bandwidth and enclave overhead can lower effective performance for AI
inference or training tasks [56].

ARM TrustZone
ARM TrustZone is a hardware-based TEE commonly used in mobile and edge de-
vices [24], [25]. By partitioning the system into two execution worlds—secure and nor-
mal—TrustZone enables secure services (e.g., cryptographic key storage, secure boot)
to run in the protected secure world. Memory and other system resources allocated
to the secure world remain inaccessible to the normal world, reducing the risk of tam-
pering or data leakage [24]. TrustZone is well-suited for lightweight security tasks on
embedded systems or IoT devices [25]. In edge AI scenarios, it can protect sensitive
inference parameters or handle secure data streams, though large-scale model training
often exceeds its resource capabilities [24], [25].

7
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2.1.3 VM-Based TEEs
Intel TDX
Intel Trust Domain Extensions (TDX) protects entire virtual machines (VMs) rather
than individual processes [57]. Unlike SGX’s enclave-limited memory, TDX can scale
to the host system’s full memory capacity, subject to hardware and platform configu-
ration [23], [57]. For instance, modern Intel Xeon servers can support up to multiple
terabytes of DDR4/DDR5 memory, which TDX encrypts using Multi-Key Total Mem-
ory Encryption (MK-TME) [19]. Memory bandwidth is generally comparable to that of
non-TEE environments, often reaching up to 307 GB/s depending on the Xeon gener-
ation, although some overhead arises from encryption and attestation procedures [23].
This broader memory coverage and VM-level isolation make TDX more suitable for
running large AI models without severe memory-enclave constraints, as found in SGX.

AMD SEV-SNP
AMD Secure Encrypted Virtualization–Secure Nested Paging (SEV-SNP) offers CPU-
level encryption and integrity guarantees for entire VMs on AMD EPYC processors
[20], [21]. It encrypts guest memory with per-VM keys, and the Secure Nested Paging
extension protects the memory layout from manipulation by a compromised hypervi-
sor [21]. AMD EPYC servers can scale to large memory footprints (often up to 4 TB
or more per socket, with bandwidth typically exceeding 200 GB/s on third and fourth
generation EPYC), allowing memory-intensive AI workloads to run inside protected
VMs [20]. Because SEV-SNP secures the full VM, applications generally do not need
code changes, making it practical for containerized and virtualized AI deployments [21].

NVIDIA H100/H200
NVIDIA H100 and H200 are GPU-based TEEs that incorporate Confidential Comput-
ing features into high-performance GPU accelerators [22]. Designed for large-scale AI
and HPC tasks, the H100 provides up to 80 GB of HBM3 memory, offering up to 3 TB/s
of memory bandwidth, while the H200 is reported to increase both memory capacity
and bandwidth for even more demanding workloads [22], [58]. This hardware-level isola-
tion encrypts data during GPU processing, preventing unauthorized access by the host
or hypervisor. The high bandwidth is critical for parallel AI training and inference,
allowing substantial data throughput while still preserving confidentiality [22]. Thus,
NVIDIA H100/H200 GPUs enable end-to-end security for model parameters, intermedi-
ate results, and data, without severely impacting the GPU’s massive parallel computing
capabilities.

8
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2.1.4 Architectural Differences Across TEE Solutions
Although all TEEs aim to safeguard data and computation from untrusted parts of the
system, their underlying approaches vary [14], [19].

Process-Level TEEs (Intel SGX, ARM TrustZone) create enclaves that isolate specific
applications or services. They typically rely on a small, dedicated memory region that,
if exceeded, forces paging and introduces performance overhead [14], [47], [59]. This
fine-grained protection is valuable for lightweight or highly targeted security needs but
may not suit large-model AI workloads [14], [59].

VM-Based TEEs (Intel TDX, AMD SEV-SNP) expand isolation to entire virtual ma-
chines, providing a larger memory footprint—fully encrypted—to support containerized
or virtualized deployments [21], [60]. Performance overhead can occur when switch-
ing between encrypted and unencrypted regions, but these TEEs are better suited to
large-scale computations [26].

GPU-Based TEEs (NVIDIA Hopper CC) integrate the GPU into the trust bound-
ary, encrypting data in GPU memory and offloading massive parallel computations
securely [45], [46], [61]–[63]. While this allows confidentiality-preserving AI training/in-
ference, it also adds cryptographic overhead to data transfers across interfaces like PCIe
or NVLink [62], [64].

IoT/Edge TEEs (ARM TrustZone, RISC-V TEEs) enable system-wide partitioning
into secure and normal worlds but typically run on resource-constrained devices, limiting
their applicability to lightweight tasks rather than large-scale AI [19], [65]–[67].

Memory usage is a key factor for performance. TEEs that use CPU enclaves usually
have limited memory, while VM-based TEEs can tap into the host’s full memory with
encryption [24], [26]. Offloading work to GPUs speeds up AI tasks but also adds extra
complexity and encryption work [23], [57], [62]. In short, process-level enclaves work
best for smaller security needs, VM-based TEEs are ideal for containerized or virtual
setups that require more memory, and GPU-based TEEs are essential for secure machine
learning workflows [22], [23], [57].

2.2 Large Language Models

2.2.1 Machine Learning
Machine Learning (ML) is the field that enables computers to learn from data and
improve through experience, rather than following fixed rules. It blends ideas from
computer science and statistics, and it underpins much of modern AI and data science.

9
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ML’s rapid growth is driven by better learning algorithms, expanded datasets, and more
powerful computing resources [68], [69].

A key principle in ML is to build a model (e.g., a decision tree or neural network) by
adjusting parameters to minimize errors on a training dataset. This is often done using
optimization techniques like gradient descent. Generalization—the ability to perform
well on new, unseen data—requires methods to prevent overfitting, such as regulariza-
tion or cross-validation. Another foundational idea is the bias–variance tradeoff, which
balances model simplicity and complexity to reduce errors [68], [69].

ML now powers a wide range of applications across science and industry. By learning
from example data rather than relying on hand-coded instructions, ML systems handle
tasks such as object recognition, language understanding, and robotics. They also fuel
recommendation systems, detect fraud, support medical diagnoses, optimize logistics,
and find hidden patterns in large datasets. ML’s ability to learn from experience enables
it to solve data-driven problems at scale [68].

2.2.2 Development
Development of Large Language Models (LLMs) encompasses an end-to-end process
that integrates system design, data collection, preprocessing, model architecture selec-
tion, training, and performance evaluation. The process begins with organising diverse
and representative datasets to capture language intricacies. Subsequently, engineers
design optimized architectures and implement scalable algorithms that support efficient
learning. Careful evaluation and iterative refinement ensure the model’s reliability, ro-
bustness, and adaptability to various applications [70]–[72].

2.2.3 Training
Training in the context of LLM development is the iterative process where the model is
exposed to large amounts of data and adjusts its internal parameters via optimization
algorithms. During training, techniques such as gradient descent and backpropagation
refine weights to minimize loss functions. The procedure involves careful batch pro-
cessing, regularization, and hyperparameter tuning to prevent overfitting and enhance
generalization. Extensive computational resources and time are required for training
large-scale models. Effective training is crucial for achieving high performance in down-
stream natural language tasks and ensuring that the model comprehends complex pat-
terns in language data [70]–[72].

10
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2.2.4 Fine-Tuning
Fine-tuning in the context of LLMs refers to the specialized retraining process applied
after initial pre-training. In this phase, the model is exposed to a smaller, task-specific
dataset, enabling it to adapt its generalized linguistic representations to a specialized
domain. By applying a lower learning rate and selective weight adjustment, fine-tuning
preserves fundamental knowledge while improving performance on targeted applica-
tions. This process is crucial for mitigating overfitting and ensuring effective domain
adaptation, leading to more robust and accurate performance on tasks such as senti-
ment analysis, summarization, or translation. This process optimizes LLMs for variety
of real-world challenges [73].

2.2.5 Inference
Inference in the context of LLMs refers to the phase where a pre-trained model processes
new, unseen input data to generate predictions or responses. During inference, the
LLM applies learned representations and probability distributions over its vocabulary
to produce contextually relevant outputs. This phase is computationally optimized to
reduce latency while maintaining accuracy and robustness under diverse applications.
Inference differs from training as it does not involve weight adjustments, but solely relies
on fixed parameters, ensuring scalable deployment. The process is critical in deploying
LLMs for real-world tasks such as natural language understanding and generation [70]–
[72].

2.2.6 Types of Models
Encoder-Only Models (Transformers as Encoders)
Encoder models use only the Transformer’s encoder stack to encode input data into con-
textual representations. BERT is a prime example: it uses a multi-layer bidirectional
Transformer encoder [73]. The encoder processes the entire input sequence simultane-
ously, enabling each token to attend to both left and right context. During pre-training,
models like BERT mask some input tokens and learn to predict them from surround-
ing context (masked language modeling) capturing the input’s meaning holistically [73],
[74].

Encoder-only Transformers excel at understanding or analyzing text rather than gen-
erating it. After encoding, a classification layer or other task-specific head can be
attached to the encoder’s output [73]. This approach is effective for tasks like sentiment
analysis, entailment, and named entity recognition [73], [74]. BERT’s embeddings, for
instance, can be fine-tuned to achieve state-of-the-art performance on question answer-
ing and language inference benchmarks [73]. Models such as RoBERTa and ALBERT
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also follow this encoder-only design, focusing on language understanding. In summary,
encoder models produce powerful fixed representations of text, making them ideal for
downstream classification and retrieval tasks rather than free-form text generation.

Decoder-Only Models (Transformers as Decoders)
Decoder-only models use only the Transformer decoder stack, which includes masked
self-attention (preventing tokens from attending to future positions) and a feed-forward
network [75]. This masking enables autoregressive generation—predicting one token
at a time while conditioning on previously generated tokens [76]. The architecture
is optimized for language modeling, learning the probability distribution of text by
predicting the next word given the previous words [75].

These transformers excel at producing fluent, coherent text in tasks such as text com-
pletion, story generation, and dialogue. The GPT series exemplifies this approach [76].
Trained on large collections to predict the next token, GPT can generate open-ended
text and be adapted for summarization or question answering via prompt-based methods
or fine-tuning. For example, GPT-3 (175 billion parameters) demonstrated that a pure
decoder architecture can produce human-like paragraphs and even perform few-shot
tasks [77]. Decoder-only models are preferred when text generation is the primary goal,
leveraging their autoregressive nature to generate outputs of arbitrary length. Models
such as LLaMA, GPT-4, and Claude also belong to this category.

Encoder-Decoder Models (Sequence-to-Sequence Transformers)
Encoder-decoder models combine an encoder to read the input with a decoder to
produce the output. The encoder is a stack of self-attention and feed-forward layers
that processes the entire input sequence into latent representations [75]. The decoder
then generates the output sequence one token at a time, attending both to the en-
coder’s output (via cross-attention) and to previously generated tokens (via masked
self-attention) [75]. This design is well-suited to tasks like machine translation or sum-
marization, where the output must be grounded in the input [77].

Such architectures handle input-output alignment effectively. For example, T5 converts
text-to-text by taking an input sentence or question and producing the corresponding
output, be it a translation, summary, or classification label [77]. BART likewise pairs
a bidirectional encoder with an autoregressive decoder [75]. Encoder-decoder models
are thus ideal for scenarios requiring both accurate input understanding and fluent out-
put generation—such as translating documents, summarizing articles, or context-based
question answering [78]. By combining a strong encoder (e.g., BERT) with a generative

12
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decoder (e.g., GPT), they offer the best of both worlds for supervised sequence-to-
sequence learning.
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TEE Type of
Model

Isolation
Mechanism

Memory
Capacity

Accelerator
Compatibility

Best Suited
For

Intel SGX

CPU
instructions

(process-level
enclaves)

Per-process
enclaves in CPU

∼128 MB EPC in
early SGX

CPU only; does
not support
accelerators

Smaller
datasets,

fine-grained
security needs,
inference tasks

Intel TDX

CPU
virtualization
extensions for
confidential

VMs

Entire VM runs
in a trusted
domain via

virtualization
extensions

Scales to host
system’s full

memory (multiple
TBs)

Supports
accelerators

(GPUs,
FPGAs, TPUs)

Containerized/
virtualized

workloads with
big memory

demands

AMD
SEV-SNP

CPU
virtualization

on AMD
architecture

Encrypted
guest memory
for entire VM
with secure

nested paging

Supports large
memory

footprints (up to
4 TB or more per

socket)

Supports
accelerators

(GPUs,
FPGAs)

Virtualized
environments,

cloud/federated
setups requiring
robust isolation

NVIDIA
Hopper CC

(GPU-based)

GPU hardware
modifications +

secure
PCIe/NVLink

Encrypted GPU
memory

providing
GPU-level
enclaves

80 GB HBM3
memory on H100

(∼141 GB on
H200)

Natively
supports GPU
acceleration;

not designed for
other

accelerator
types. Usually

paired with
VM-based

TEEs

Large-scale
parallel

computations,
deep learning
training/infer-

ence

ARM
TrustZone

Hardware-based
secure world

integrated into
ARM CPUs

System-wide
isolation by

partitioning the
processor into

secure and
normal worlds

The secure world
is allocated a

fixed, relatively
small portion of
system memory

Primarily
CPU-based;

does not
support

accelerators

Low-power,
mobile, IoT,

and edge
devices

requiring secure
boot, DRM, key

management,
etc.

Table 2.1: Comparison of TEE solutions.
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Chapter 3

Analysis

This chapter begins by defining the AI model lifecycle in detail, breaking it into the
key stages where vulnerabilities are most likely to occur. We then analyze the various
threats that commonly take place at each stage, exploring how Trusted Execution Envi-
ronments (TEEs) can mitigate—or fail to mitigate—specific risks. Finally, we conclude
by pinpointing which phase is the most vulnerable overall and discuss the potential
reasons behind it.

3.1 Defining the AI Model Lifecycle

Previous research typically divides the machine learning lifecycle into broad phases like
development, training, and inference. However, for this analysis we needed a more de-
tailed approach, one that establishes stricter definitions and breaks the lifecycle down
into smaller subphases [70]–[72], [79]. This granularity allows to precisely identify where
and why specific attacks occur. While those earlier works provided valuable guidance,
their broader categorizations left some ambiguity about the exact points of vulnerabil-
ity. Because of that, we developed the following definition to offer clearer boundaries for
analyzing security threats at each stage. The following definition is focused on a central-
ized model lifecycle, which significantly differs at certain phases from the decentralised
one, which is outside of the scope of this paper.

3.1.1 Centralized Model Lifecycle
1. The Development Phase consists of two subphases: model selection and

data collection and preparation. This phase is where the LLM is created.
Model Selection defines choosing an appropriate base model considering factors
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like architecture, scalability, and performance. In centralized settings, the model
is typically designed to leverage a complete, aggregated dataset, ensuring consis-
tency across training. However, this requires robust security measures to prevent
breaches, as all data is stored in one location. We then go on to data collection and
preparation, where we gather, clean, and normalize data in a unified repository.
The centralized approach enables comprehensive data preprocessing and precise
quality control, but it may increase risks related to privacy and data leakage.

2. The Training Phase consists mainly of two subphases: pre-training and fine-
tuning. The rest of the subphases, such as reinforcement learning, are optional.
In this phase, the model is provided with data and trained on it. Pre-training is
where the model is initially trained on a large-scale dataset using self-supervised
learning. In a centralized system, this process benefits from high-performance
computing infrastructure, allowing for the efficient processing of extensive data.
Fine-tuning, on the other hand, is where the model is refined with domain-specific
data to enhance its applicability to particular tasks (e.g., summarization or ques-
tion answering). Fine-tuning ensures that the model adjusts uniformly to special-
ized contexts. In some cases, reinforcement learning (often with human feedback)
is used to align the model’s behavior with ethical and functional goals. Since the
training environment is controlled and centralized, it allows for direct implemen-
tation of optimization strategies and continuous improvement cycles. Other types
of learning can be supervised, unsupervised, etc., depending on the purpose and
goal for the model.

3. The Evaluation Phase is where we do performance assessment and iter-
ative improvements on the trained model. Performance Assessment is where
the trained model is evaluated using a set of defined metrics (accuracy, coher-
ence, etc.) on a separate validation dataset. Evaluation leverages the full scope
of collected data, yielding reliable performance benchmarks. When this is com-
pleted, the next step would be to do iterative improvements based on assessment
outcomes. Here, developers iterate on the model architecture, training data, and
hyperparameters to optimize performance. This setup enables quick re-training
and uniform updates across the entire dataset.

4. The Deployment Phase (Inference) consists of integration and optimisa-
tion. During integration the model is integrated into a production environment
(e.g., cloud services, web APIs) where it begins making real-time predictions. De-
ployment ensures that all users interact with the same model instance, simplifying
maintenance and consistency. This is where the inference of the model officially
starts. Most papers refer to this whole phase as just inference. Once the model
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is up and running, shortcomings and bottlenecks can be recognized, so the model
needs to be optimized. This is where optimization techniques such as quantiza-
tion, pruning, and hardware acceleration (e.g., GPUs or TPUs) are applied, so
that efficient real-world inference—the process of using a trained model to make
predictions or generate outputs from new data—can be ensured. These optimiza-
tions reduce latency and resource consumption during high-demand usage.

5. Monitoring and Maintenance is the last phase, made up of Continuous
Monitoring and Updates and Refinements. During monitoring, the model’s
performance is continuously tracked using logging and analytics. This allows for
the detection of issues like model drift, where the performance degrades over time
due to changing data patterns. Regular updates and refinements (including re-
training or fine-tuning) are applied based on new data or feedback. Maintenance
ensures that improvements are uniformly distributed and any security vulnerabil-
ities are patched promptly. From here, developers and researchers can always go
back to the training or deployment phase.

3.2 Security Threats

We gathered these security threats from related work based on their relevance to the
AI model lifecycle, adopting the categorization from “SoK: A Systems Perspective on
Compound AI Threats and Countermeasures” [80], because it effectively met our re-
quirements. In addition, we extended their framework by describing the stages in the
AI model lifecycle where these attacks occur and assessing whether they can be mit-
igated by TEEs or not. Specifically, we divide the identified threats into three main
layers: software-level, hardware-level, and algorithmic/ML-level, based on what layer
they initially attack.

We also clarify that “white-box” attacks assume full access to model parameters, while
“black-box” attacks rely on only the model’s outputs. Unless we specify a particular
subphase (e.g., data collection vs. active training), the threat can emerge at any relevant
point in that “larger” phase. Finally, these attacks often do not exist in isolation.
Additionally, if the same attack can take place at two different phases we provide an
example of how it manifests at each specific phase. Adversaries often combine them
for greater impact, a topic we address briefly in the last section on combining attacks
across layers.
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3.3 Software / Application-Layer Threats

To begin addressing software/application-layer threats, we note that the complexity
of hypervisors/OS can hide both known and undiscovered zero-day exploits, creating
multiple potential entry points for attackers since they contain a large Trusted Comput-
ing Base (TCB). Even if many vulnerabilities are publicly reported and fixed, unknown
flaws can still leave systems exposed, potentially leading to unauthorized access or other
security breaches [63]. These attacks can happen at any stage and are partially miti-
gated by TEEs, which isolate guest memory from hypervisors/OS. However, unknown
firmware or microcode bugs within the TEE itself still pose threats, because trust is
moved to hardware/firmware, which can also harbor undiscovered vulnerabilities.

Continuing with threats related to privileged software, untrusted privileged software
(e.g., hypervisors, OS processes) can observe or modify memory unless TEE protec-
tion is in place. Confidential Computing (CC) blocks hypervisor access to system and
GPU memory [81], safeguarding code and data from OS compromises, malicious ad-
ministrators, or physical attacks [39]. By design, TEEs treat privileged host software
as untrusted, enforcing hardware-level isolation to protect data during development,
training, and deployment. Without this protection, compromised OS processes could
tamper with models or access logs and memory snapshots.

In a similar vein, privileged insiders (e.g., cloud administrators, employees) can leak
confidential data—intentionally or accidentally—causing breaches, fraud, or IP theft,
while untrusted cloud providers with physical or administrative control pose similar
threats. NVIDIA’s CC isolates sensitive computations and protects against unautho-
rized memory access or certain side-channel attacks [26], [63], [79]. Although TEEs
prevent untrusted providers from viewing memory via hardware-level encryption, their
confidentiality depends on secure provisioning and attestation. If a malicious tenant
insider gains legitimate TEE privileges, or if code within the TEE is compromised,
sensitive data remains vulnerable throughout the model’s lifecycle.

Looking further into software supply chains, supply-chain attacks introduce backdoors
or data-exfiltration logic into AI systems (e.g., pip or conda package typosquatting).
Attackers may inject trojaned or malicious packages that leak sensitive model data or
enable unauthorized code execution [79], [80]. TEEs partially mitigate this threat by
ensuring the code running inside the enclave is exactly as delivered (via attestation).
However, TEEs cannot verify if that code is inherently malicious; they simply prevent
host-level tampering. During development, Trojaned libraries or container images can
exfiltrate data or embed backdoors, while in deployment, malicious dependencies in
serving frameworks can leak model weights.
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Continuing with external service interactions, exploiting insecure APIs, endpoints, or
misconfigured services can grant attackers unauthorized access or privileges [26]. TEEs
protect memory contents from host-level reads/writes, but an insecure API can still be
exploited outside the TEE. This threat typically appears during integration or deploy-
ment, where flawed or badly configured APIs let attackers bypass application logic.

Regarding deeper privilege misuse, privilege escalations exploit bugs or misconfigura-
tions in frameworks, drivers, or access control lists to gain higher-level permissions [80].
TEEs partially mitigate these attacks by isolating the guest environment from the host,
restricting the damage from external privilege abuse. Still, vulnerabilities within TEE-
managed software remain exploitable if the code inside the enclave is itself buggy. Dur-
ing development/training, attackers can escalate privileges and access sensitive training
data; in deployment, they can steal or alter the served model.

Next, tampering with data at the software layer involves forging or rewriting in-flight
model parameters or user inputs stored in untrusted buffers, which can compromise
AI outcomes [80]. TEEs partially mitigate such software-layer tampering by requir-
ing memory integrity for in-flight data but cannot prevent logical or application-level
misconfigurations. Attackers can overwrite datasets or weights during training to de-
grade AI performance, or corrupt logs and intermediate data after deployment if the
environment is misconfigured.

Moving on to encryption-based issues, replay attacks exploit reused ciphertext or unre-
freshed encryption states—e.g., replaying old encrypted parameters—to corrupt train-
ing updates or revert inferences [35]. TEEs alone do not inherently block replays if
stale ciphertext is accepted. In practice, many confidential computing frameworks en-
force nonces or IV counters (like AES-GCM with incrementing IVs) to prevent these
issues [63], [79]. If done properly, TEEs can mitigate replay attacks, especially during
training or deployment, by rejecting old or duplicated ciphertext.

Switching to user-driven vulnerabilities, input (prompt) injection targets LLMs or other
AI pipelines by crafting malicious prompts that bypass safety checks and potentially
achieve code injection or SSRF [79], [80]. TEEs do not mitigate input injection, since
malicious inputs are executed exactly as provided. These attacks typically emerge dur-
ing deployment/inference when users supply prompts to LLMs.

Looking at availability concerns, resource exhaustion attacks (DoS, ReDoS, forced sys-
tem panics) overwhelm the system to disrupt service availability [80]. TEEs focus on
data confidentiality and integrity, not on sustaining system availability under heavy
load, so these attacks remain unmitigated. They can appear during training or evalua-
tion by overloading computations or in deployment by flooding inference requests.
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Addressing broader advanced threats, targeted cyber-attacks (APTs, malware, etc.)
use spear phishing, password compromise, or zero-day exploits to infiltrate cloud or on-
premise environments [26]. TEEs help shield data in memory from direct exfiltration
but do not block phishing or OS-level hijacking. Once an attacker runs code inside the
tenant’s TEE session, they can access data legitimately used by the application. Such
attacks can happen in any phase.

On a more encouraging note, TEEs fully mitigate unauthorized memory access at the
software level by encrypting application buffers in RAM or GPU memory. Even if
an attacker gains host privileges, they cannot read or dump that memory. Without
a TEE, malicious processes could inspect memory snapshots to steal weights or data
during training, or inference inputs at runtime.

However, returning to internal coding pitfalls, memory safety flaws (e.g., buffer over-
flows, use-after-free) let attackers read or corrupt sensitive data within the TEE [80].
TEEs do not fix vulnerabilities in user code and cannot prevent an attacker from ex-
ploiting those bugs to manipulate data inside the enclave. These attacks can occur
during development, training, or deployment if the application code or libraries have
memory safety issues.

In a similar way, side-channel attacks (software-level) remain partially mitigated. While
TEEs encrypt memory structures, attackers can still glean information via timing or
cache-based channels. During pre-training or inference, subtle memory and cache usage
may leak partial model parameters or user data if an attacker can measure performance
counters. Although TEEs limit direct data reads, advanced side channels can still
extract valuable information.

3.4 Hardware / Physical Layer Threats

Turning to hardware/physical threats, physical attacks on hardware involve local tech-
niques like attaching probes to DRAM buses or tampering with power lines—generally
beyond the TEE’s threat model. Although hardware encryption can thwart cold-boot
or bus snooping, a fully determined attacker with specialized equipment can still breach
the device’s physical security. Such attacks can occur during development, training,
deployment, or monitoring.

Likewise, bus snooping or dumping memory (including cold-boot attacks) can leak pro-
prietary parameters or private inputs [80]. HETEE and on-package HBM encryption
help defend against bus probing, but if attackers obtain encryption keys or breach the
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hardware root of trust, the protection may fail. During development/training, attackers
can extract partial weights; in deployment, they can reveal final models or user inputs.

Expanding on hardware interface threats, bus hijack or I/O intercept targets untrusted
interconnects like PCIe or NVLink [35]. TEEs rely on hardware-based encryption and
integrity checks for off-chip traffic, but if an attacker has physical control or compromised
firmware, advanced man-in-the-middle attacks are still possible. These issues arise in
training and deployment alike, potentially exposing updates or inference data in transit
if not properly encrypted.

Addressing microarchitectural leakage, side-channel attacks (hardware-level) observe
power usage, electromagnetic signals, or performance counters to deduce sensitive infor-
mation [80]. TEEs mitigate some of these vectors by encrypting memory and restricting
certain counters, but timing-based or EM-based leaks can still occur. During training,
side channels can reveal model parameters; in deployment, attackers can glean sensitive
user inputs from runtime activity.

Building on memory-based exploits, rowhammer (bit-flip) attacks repeatedly access cer-
tain DRAM or HBM rows to induce bit flips in adjacent cells [80]. Memory encryption
and integrity checks can detect or prevent silent corruption, but they do not fully elim-
inate the risk of system instability or crashes. Attackers may degrade model accuracy
or sabotage inference by flipping bits in the training or deployment stage.

Similarly, fault injection (with laser or voltage glitches) physically alters hardware be-
havior, causing transient computation errors in model parameters or logic [80]. TEEs do
not defend against such invasive physical modifications. Attackers can sabotage training
or cause incorrect inferences by forcing hardware faults at critical steps.

Turning to firmware integrity concerns, firmware tampering (hardware trojans) adds
malicious logic into CPU/GPU firmware or board components [80]. If the hardware
root of trust is compromised, TEEs cannot detect or block malicious firmware that
bypasses the normal security chain. These trojans might become active during training
or deployment, silently leaking data or corrupting computations.

Along the same lines, leftover GPU memory exploitation occurs when prior compu-
tations leave sensitive data in memory that an attacker can later retrieve [63]. GPU
TEEs encrypt memory allocations to reduce leftover-data leaks, but malicious firmware
or advanced side-channel methods can still bypass these measures. During training or
deployment, memory not fully cleared or re-provisioned can be harvested by attackers
in a multi-tenant setting.
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Further complicating multi-tenant clouds, insufficient isolation in shared hardware can
let one tenant steal or corrupt another tenant’s data [26]. TEEs encrypt memory to
protect data from the host or co-tenants, but side channels in caches or scheduling
remain possible. Training with multiple tenants on the same machine or deploying
shared GPU inference can thus create data-leak or data-corruption risks.

Lastly, unverified hardware accelerators such as custom TPUs or NPUs undermine TEE
guarantees if the accelerator itself is compromised or tampered with [61], [81]. While
CPU or GPU TEE modes can encrypt memory traffic, an untrusted or unverified piece
of hardware might leak data or subvert computations. These threats surface especially
during training or deployment when external accelerators handle sensitive data without
TEE-level attestation.

3.5 Algorithmic / ML-Layer Threats

Shifting focus to algorithmic threats, model/data poisoning occurs when attackers in-
ject malicious samples into training data or tamper with local gradient updates, degrad-
ing model accuracy or installing hidden backdoors [37], [46]. TEEs partially mitigate
infrastructure-based tampering, but cannot block corrupted inputs from legitimate data
providers. These vulnerabilities appear during development, training, or monitoring,
where adversaries slip in malicious data over time.

Within federated learning, a related risk is the “lazy” participant, who lies about dataset
size or composition [36]. Since TEEs simply process whatever data they receive, they
cannot detect dishonest claims. Although TEE memory encryption protects data from
the host, it does not verify data authenticity. Attackers exploit this during developmen-
t/training phases.

Turning to concurrency issues, scheduler/concurrency-based integrity attacks manipu-
late thread scheduling in multi-threaded or distributed ML pipelines to force incorrect
computations [46], [81]. TEEs help isolate guest memory but still rely on host-level
scheduling for thread management. Consequently, an untrusted OS could cause concur-
rency conflicts that degrade the model’s integrity during training or inference.

Moving on to inference-time privacy threats, model inversion or data reconstruction
extracts private training information from the model’s outputs or gradients [37], [46].
TEEs partially mitigate host-based snooping of internal states, but they cannot prevent
a remote user (who queries the model) from deducing data via normal outputs. Hence,
inversion emerges mainly at deployment/inference.
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Similarly, membership inference attacks (MIA) let adversaries determine whether a data
record was used in training [37], [46], [80]. TEEs do not mitigate MIA because these
attacks hinge on query responses from the model. Once again, the TEE keeps data
hidden from the cloud host, but does not alter the model’s externally visible predictions.

Stepping beyond membership, attribute inference targets private features (e.g., de-
mographics) from the model’s outputs [37]. TEEs partially mitigate direct host-level
scrutiny but cannot stop a malicious user from inferring attributes via normal inference
queries. This typically occurs at deployment, where the attacker leverages repeated
queries to reveal sensitive information.

Lastly, adversarial example attacks craft subtle perturbations in inputs to cause mis-
classifications [37], [46], [82]. TEEs do not protect against these input-based exploits, as
they focus on safeguarding memory and data in hardware—not on input validation or
model-level robustness. Adversaries can thus supply maliciously perturbed data during
deployment/inference to induce incorrect predictions.

3.6 Discussion

3.6.1 Most Vulnerable Phases
The training stage brings together massive volumes of data, distributed or cloud-based
infrastructures, and complicated software pipelines—greatly expanding the attack sur-
face. As the model ingests and modifies its parameters based on input data, adversaries
can corrupt the process either by injecting poisoned samples that implant hidden back-
doors or by exploiting weaknesses in multi-tenant environments and third-party frame-
works. Because of this complexity, even minor oversights (e.g., “untrusted buffers” or
“trojaned libraries”) can allow an attacker to compromise or exfiltrate the model before
it’s fully formed, leaving little trace. Data poisoning stands out as a particularly severe
threat here: attackers slip malicious inputs into training sets to skew future model pre-
dictions—often undetected—while infrastructure misconfigurations in cloud clusters or
orchestration services can expose training data or enable tampering. The sheer width of
infrastructure, datasets, and software used, along with reliance on shared accelerators,
makes training severely vulnerable and impactful stage: once the model is compromised
at its foundation, every subsequent phase inherits the malicious modification.

Although the model’s core logic is set once training completes, the deployment (infer-
ence) phase subjects it to continuous, real-world interaction—placing the model within
an externally accessible environment. Attackers exploit this exposure by launching
adversarial queries or manipulative inputs that bypass many lower-level protections.
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Tactics such as input (prompt) injection can trigger malicious code execution or leak
internal details, while adversarial examples—tiny, often undetectable input perturba-
tions—can cause misclassifications or errant outputs. Inference also invites model ex-
traction attacks, where adversaries repeatedly query the AI system to clone its behavior,
undermining intellectual property. Moreover, if the host environment is compromised,
memory scraping or snapshotting can reveal user data or model parameters in real-time.
The resulting data breaches or logic manipulations frequently go unnoticed because le-
gitimate queries and malicious queries arrive through the same interface. Thus, while
training vulnerabilities threaten the model’s internal integrity, deployment-time attacks
exploit the external-facing nature of inference to produce immediate and potentially
large-scale consequences.

From a software perspective, training code depends heavily on third-party components,
raising supply-chain risks and vulnerabilities in orchestration frameworks, whereas in de-
ployment, insecure endpoints or flawed APIs let attackers escalate privileges or exfiltrate
outputs. Hardware threats also cut across these phases. During training, adversaries
can use multi-tenant GPUs or advanced side-channel techniques (e.g., rowhammer) to
extract or corrupt the model’s parameters. In deployment, the model must run on hard-
ware potentially shared with untrusted code, enabling timing or bus-contention attacks
that leak user inputs or partial weights in real time. Algorithmically, poisoning and
backdoor insertion are the biggest concerns in training, while at inference the model
can be systematically probed via white-box or black-box approaches to reveal private
data, craft adversarial inputs, or replicate the model. Altogether, these layers make the
training and deployment phases especially exposed to multidimensional attacks that
each require specific defenses.

3.6.2 Rest of the Phases
While development (model creation/data prep) faces moderate exposure to malicious
libraries or unsafe code, these threats are generally within the project team’s con-
trol—vulnerabilities here often stem from insecure supply chains or poor dependency
management. Evaluation (testing/validation) is less open to external input, so its main
danger is failing to detect attacks or backdoors that originated in training, rather than
facing major new exploits. Finally, monitoring and maintenance can miss ongoing at-
tacks (e.g., slow data drift or unauthorized updates) if logs and security patches are not
diligently managed; although it is not as high-profile a target as training or deployment,
attackers can still exploit weak logging or stale infrastructure configurations to remain
undetected or reintroduce corrupted data.
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3.6.3 TEEs Strengths and Limitations
TEEs, memory encryption, and strong cloud segmentation help but do not fully solve
issues in training and inference. They cannot detect malicious data from authorized
sources or alter a model’s visible decision boundaries—leaving adversarial queries and
model extraction unchecked. Logging and monitoring may fail if training sets or APIs
are poorly secured. Thus, robust data governance, validated supply chains, thorough
testing, and continual monitoring must complement TEE isolation. Although TEEs
protect data confidentiality, enforce in-memory integrity, and isolate tenants from the
host, they do not address all AI security challenges (e.g., data poisoning, prompt injec-
tions, or side-channel leaks) nor ensure trust in the hardware supply chain. Ultimately,
traditional software hardening, rigorous data governance, side-channel defenses, and
careful model validation remain critical alongside TEEs.
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Name of Attack Phase of AI Model Lifecycle TEE Mitigation
Zero-day OS/hypervisor vul-
nerabilities

Any phase Partially mitigated

Untrusted privileged software Development, Training, Deployment Partially mitigated
Privileged insiders Any stage Partially mitigated
Supply-chain attacks Development, Training, Deployment Partially mitigated
Insecure APIs or misconfig-
ured endpoints

Integration, Deployment No

Privilege escalations Development, Training, Deployment Partially mitigated
Tampering with data at the
software layer

Development, Training, Deployment Partially mitigated

Replay attacks Training, Deployment Partially mitigated
Input (prompt) injection Deployment/Inference No
Resource exhaustion / DoS Training, Evaluation, Deployment No
Targeted cyber-attacks
(APTs, malware, etc.)

Any phase Partially mitigated

Unauthorized memory access Training, Deployment Yes
Memory safety flaws (buffer
overflows, etc.)

Development, Training, Deployment No

Side-channel attacks
(software-level)

Any phase Partially mitigated

Physical attacks on hardware Development, Training, Deployment,
Monitoring

No

Bus snooping / dumping
memory

Development, Training, Deployment Partially mitigated

Bus hijack / I/O intercept Training, Deployment Partially mitigated
Side-channel attacks
(hardware-level)

Training, Deployment Partially mitigated

Rowhammer (bit-flip) attacks Training, Deployment Partially mitigated
Fault injection (laser, voltage
glitching)

Training, Deployment No

Firmware tampering (hard-
ware trojans)

Training, Deployment No

Leftover GPU memory ex-
ploitation

Training, Deployment Partially mitigated

Insufficient isolation in shared
hardware

Training, Deployment Partially mitigated

Unverified hardware accelera-
tors

Training, Deployment Partially mitigated

Model/Data poisoning Development, Training, Monitoring Partially mitigated
“Lazy” participant in feder-
ated learning

Development, Training No

Scheduler/Concurrency-
based integrity attacks

Training, Inference Partially mitigated

Model inversion / data recon-
struction

Deployment/Inference Partially mitigated

Membership Inference At-
tacks (MIA)

Deployment/Inference No

Attribute inference Deployment Partially mitigated
Adversarial example attacks Deployment/Inference No

Table 3.1: Summary of Attacks, Phases, and TEE Mitigation
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Experiment Design

This chapter explains how to train and run inference on a large language model (LLM)
in a Trusted Execution Environment (TEE). We discuss choosing a model suited to the
available TEE-enabled hardware and how factors such as model size, GPU usage, and
TEE enabled phases affect performance. We then outline the essential hyperparame-
ters (e.g., batch size, number of epochs) to adjust and the performance metrics (e.g.,
Time To First Token, ITL, TPS, Latency, QPS) to monitor during both training and
inference. Finally, we highlight how to measure TEE-specific overhead versus general
factors like I/O or network latency, forming a clear methodology for understanding LLM
performance under a TEE.

4.1 Hardware, TEE Availability and Model Selection

Selecting a suitable LLM first requires hardware that can accommodate both the model’s
memory requirements and the available TEE to use. If only CPU-based TEEs (e.g., Intel
TDX or AMD SEV-SNP) are available [12], [13], [83], smaller models or CPU-friendly
workloads may be necessary, as large-scale GPU acceleration is not protected by the
TEE. In contrast, newer GPUs like the NVIDIA H100 include their own hardware-
backed GPU TEEs, allowing both training and inference to run confidentially on the
GPU [10], [16]. A fully end-to-end secure pipeline can combine CPU TEEs and GPU
TEEs so that data remains encrypted throughout, but each added layer increases cryp-
tographic overhead [10], [35].

Because TEE overhead varies greatly with model size, batch size, and which phases
(training, inference, or both) run in TEE mode, different hardware setups will result
in different performance trade-offs. For instance, bigger models or heavier workloads
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on a GPU TEE tend to spread out the cost of encryption more effectively than small
or I/O-bound tasks, which may see a higher amount of overhead [62], [81]. Similarly,
enabling TEEs across multiple GPUs multiplies encryption and authentication steps
for distributed training—especially if gradients must be protected in transit—further
impacting performance [35]. In practice, picking an LLM that comfortably fits within
the secure memory of the selected CPU or GPU TEE, limiting excessive offloading, and
deciding where (CPU,GPU or both) and when (training, inference or both) to enable
TEE will all determine the overall overhead [10], [39], [64]. Using high-bandwidth
interconnects like NVLink or NVSwitch is recommended if possible to ensure that any
observed slowdowns are primarily due to encryption and authentication overhead rather
than network limitations [35], [57], [62], [64].

A key consideration is to pick an LLM that fits the available hardware—both in terms
of memory and the presence of a TEE on the CPU, GPU, or both. The model must be
sized appropriately so that it can be trained and inferred fully within the secure memory
available. Otherwise, repeated offloading or swapping outside the enclave undermines
security and increases overhead [12], [13], [32], [37]. Both model size and hyperpara-
meters (especially batch size) heavily influence how effectively TEE overhead is divided
among individual processing steps—like encrypting inputs, securely transferring data
between the CPU and GPU, decrypting outputs, and the associated communication or
gradient exchange steps [32], [35], [52].

If only CPU-based TEEs are available, a model up to a few hundred million parameters
may be necessary to fit into encrypted memory without excessive overhead [12], [13].
If GPU TEEs (like NVIDIA H100) are available, larger-scale models (up to billions or
tens of billions of parameters) become a reasonable choice, provided that GPU-secured
memory can accommodate the model weights and activations [10], [16]. The goal is to
pick an LLM that uses as much secure memory as possible without pushing memory
usage so high that data repeatedly goes outside the TEE boundary. TEE-specific factors
also include the model size, batch size, the phase of the model lifecycle when TEE is
enabled, the number of available GPUs, and the workload ratio(compute vs I/O) [35],
[37], [81]. Large models require more encrypted transfers (weight loading and gradient
exchange), but often hide overhead better during long-running computation, whereas
smaller models do less processing, making the encryption overhead more noticeable [62].

Additionally, a larger batch size processes more data in each iteration or inference call,
which spreads out TEE overhead over more samples, while very small batches repeat-
edly trigger encryption costs [35], [52]. The model’s phase—training or inference—also
plays a crucial role. Training in TEE mode may add overhead at every gradient up-
date and communication step, especially in multi-GPU setups [35], [57]. In inference,
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the overhead mostly affects time-to-first-token and inter-token latency, though these
delays are reduced with large models or long sequences [62]. Moreover, scaling out to
multiple GPUs can multiply encryption costs, which can lead to significant slowdowns
if each GPU-to-GPU transfer is encrypted [35]. Lastly, if the workload is I/O-bound
(many short prompts or small batches), TEE overhead is more pronounced, whereas
in compute-bound workloads (large batches or long sequences), the encryption cost is
relatively amortized over more computation [32], [37], [52].

4.2 Performance Metrics

Time To First Token (TTFT), Inter-Token Latency (ITL), Tokens Per Second (TPS),
Latency (per query), and Queries Per Second (QPS) are typically the five main metrics
collected during inference. TTFT measures the delay before the first token appears, thus
capturing any startup overhead such as secure memory setup or prompt encryption. ITL
tracks the time gap between tokens after the first one, indicating whether additional
encryption steps slow down token-by-token generation. TPS reflects the model’s overall
token production rate, which can drop if TEE-related I/O stalls decoding. Meanwhile,
per-query Latency is the total time from request arrival to the final output token,
incorporating both TTFT and ITL. QPS shows how many queries can be handled per
second while meeting a specific latency target, making it a key indicator of system
throughput under load [62].

When a TEE is in place, TTFT and ITL often become the most telling signs of overhead
on latency, because they highlight added delays in prompt processing and token genera-
tion. Encryption or enclave-switching steps can significantly extend the time it takes to
deliver that first token, which is why TTFT is sensitive to TEE configuration. Likewise,
if each new token must be encrypted or decrypted before being passed along, ITL rises
and TPS can fall accordingly. QPS is affected more broadly, since prolonged processing
time per query will inevitably reduce the system’s capacity to handle multiple requests
at once. These metrics are usually measured by instrumenting the inference pipeline
with timers at key points (e.g., when a query arrives, when the first token is emitted,
and when the final token is produced), and by aggregating the results across many runs.
By comparing TEE-enabled scenarios with TEE-off baselines, the performance impact
of confidential computing can be isolated [62].

In a training context, related metrics include iteration time (batch-level latency), through-
put (tokens or samples per second), and an equivalent notion of QPS that tracks how
many training steps can be completed in a given time. TTFT here is less critical un-
less we specifically measure the overhead of loading the first batch into the enclave.
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In general, what matters is whether encryption and secure memory management slow
down the forward/backward passes (affecting iteration time) or reduce the frequency
of updates (hurting throughput). Evaluating TEE-on vs. TEE-off runs highlights how
additional security measures might stall training loops or degrade scalability [26], [63].

4.3 Batch Size, Epochs, and Iterations per Epoch

Alongside performance metrics, batch sizes, epochs, and iterations per epoch, need to
be considered, especially in the training process. A batch size refers to the number
of data samples (or tokens, depending on the framework) that the model processes
before updating the parameters. An epoch is one complete pass over the entire training
dataset. Iterations per epoch simply specify how many batches fit into one epoch—if
the dataset is split into smaller chunks of size B, and the dataset has N samples in
total, then we will have ⌈

N

B

⌉
iterations per epoch [36], [69], [84], [85].

Using a TEE can impact these choices, since larger batch sizes might require more se-
cure memory, and frequent enclave transitions can add overhead if you opt for smaller
batches. There is usually a balance: bigger batches can reduce the number of enclave
entries per epoch, potentially cutting some overhead, but they also demand more secure
memory capacity, which might be limited. On the contrary, smaller batches fit more eas-
ily into the TEE’s memory constraints and can reduce per-batch latency, but they may
require more frequent switching and encryption steps, lowering overall throughput [85],
[86].

In practice, batch size is typically picked based on hardware memory constraints (in-
cluding any additional TEE restrictions), while epochs and iterations per epoch are
chosen according to the total data size and the desired granularity of updates. Prelim-
inary experiments are often run to find a point that maximizes GPU/CPU utilization
without hitting TEE memory limits or causing excessive overhead from repeated se-
cure operations. This process of tuning batch sizes, epochs, and iterations per epoch is
critical for keeping training times under control while still benefiting from confidential
computing [26], [63].

30



Chapter 5

Implementation

This chapter describes how the experimental design from Chapter 4 can be implemented.
It details the configuration of hardware and software and explains the model training,
inference and testing under various batch sizes, epochs, and TEE modes. The primary
goal is to validate the methodology and, in Chapter 6, present results that quantify
TEE overhead during both training and inference.

5.1 Hardware and TEE Availability

When conducting confidential computing experiments are TEEs are supposed to be
ebanled across all relevant layers, beginning at the BIOS or firmware level and extending
through the hypervisor, container runtime, and any applicable GPU hardware. On
platforms supporting AMD SEV-SNP or Intel TDX, TEE features should be activated
in the BIOS and configured at the operating system level [11], [12], [20], [83]. For GPU-
based TEEs, such as those in NVIDIA H100 or H200 accelerators, additional hardware-
specific settings must be configured to ensure data remains protected throughout GPU
computations [10], [16], [22]. This includes updating TEE-capable firmware and BIOS
on both the system and GPUs, installing compatible drivers, adjusting CUDA or other
libraries, and configuring GPU enclaves for isolation. When AMD SEV-SNP or Intel
TDX is also utilized, CPU-level TEEs should be aligned with GPU enclaves to sustain
continuous protection of data transfers between CPU and GPU memory.

At the software layer, the virtual machine required by TEEs such as AMD SEV-SNP
or Intel TDX must be configured by the researcher. One way to achieve this is through
Kata Containers, which encapsulates workloads in lightweight virtual machines (VMs)
rather than standard namespaces [11], [12], [20], [83], [87]. By toggling TEE modes on
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or off (e.g., unencrypted vs. SEV-SNP/TDX-encrypted containers), it becomes possible
to collect performance metrics for tasks such as training and inference on LLM models.
This approach allows researchers to quantify TEE overhead in an end-to-end encrypted
environment while preserving the convenience of familiar container workflows [26], [65].

In addition, ensuring robust data transfer capabilities is critical to minimize any con-
founding network or I/O slowdowns. High-bandwidth interconnects—such as NVLink,
PCIe, or InfiniBand—should be properly configured and employed wherever possible,
preventing peripheral throughput constraints from overshadowing TEE-related over-
head. By maximizing transfer efficiency, researchers can better isolate performance
impacts arising from confidential computing features [10], [16], [22], [81].

5.2 Model and Dataset Selection

When evaluating transformer-based architectures, selecting a widely recognized model
from the literature is recommended, so alignment with established benchmarks can be
assured, allowing for direct comparisons with prior work. This process involves verifying
that the chosen model—whether encoder-only, decoder-only, or encoder-decoder—is
compatible with the available hardware resources in terms of computational power and
memory capacity. If no accelerators are employed, the model’s size should be adjusted
accordingly so that CPU-based training and inference remain feasible.

After finalizing the model, a dataset must be identified based on the model’s archi-
tecture and intended task—encoder-only variants, for instance, might pair well with
paraphrase detection, whereas encoder-decoder versions are suited for translation or
summarization. Once the dataset is chosen, tokenization should be applied (e.g., via
libraries such as Hugging Face Transformers) and stored for streamlined retrieval [88].
During this stage, factors such as input truncation, padding, and special tokens should
be accounted for, to ensure compatibility with the selected architecture’s requirements.
This approach minimizes redundant preprocessing steps and helps with consistency in
evaluating performance across diverse experimental setups.

Selecting an appropriate deep learning framework is crucial for streamlining both the
development and execution of a chosen model. Each framework has unique strengths.
PyTorch offers a dynamic computation graph, making it highly flexible for rapid pro-
totyping and debugging. TensorFlow provides enterprise-level deployment capabilities
and an extensive toolset suitable for production environments. Regardless of the chosen
framework, it is vital to ensure compatibility with underlying hardware, drivers, and
libraries (e.g., CUDA or ROCm) to avoid environment conflicts and preserve accurate
benchmark results [89], [90].
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5.3 Testing and Evaluation Process

When conducting training experiments to evaluate TEE overhead, different batch sizes
(e.g., 8, 16, 24, 32) and number of epochs (e.g., 1, 3, 6) should be used to capture perfor-
mance under different workload scenarios. Key metrics such as Time to First Training
Step (TTFT), per-iteration latency, overall training time, and model convergence should
be collected in both TEE-enabled and TEE-disabled modes [11], [69]. Storing these data
points in dedicated output files (e.g., CSV or JSON) simplifies post-processing and al-
lows for direct comparisons.

Python scripts or similar tools can be used to parse these logs, generate plots, and
highlight areas where TEE functionality imposes notable overhead. By systematically
gathering and analyzing these metrics, researchers gain insight into both raw perfor-
mance and the specific stages where confidential computing incurs overhead.

A similar approach applies to inference: by testing different batch sizes (e.g., 8, 16,
24, 32) to capture a range of concurrency levels. Crucial metrics include Time to First
Token (TTFT), Inter-Token Latency (ITL), Tokens per Second (TPS), and Queries per
Second (QPS) [62]. As with training, these metrics should be recorded in an automated
fashion (e.g., output files) to make aggregation and visualization using Python scripts
easier. By contrasting metrics from TEE-enabled and TEE-disabled runs, the impact
of confidential computing on inference responsiveness and throughput can be isolated,
quantifying the trade-offs involved in securing model outputs [26], [62], [63].

Lastly, to ensure the successful execution of these experiments, researchers must verify
that all required software libraries (e.g., TEE-enabled drivers, Python packages, con-
tainer runtimes) are compatible with the available hardware. Proper installation and
configuration of these components help avoid bottlenecks or incompatibilities that could
affect performance measurements.
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Chapter 6

Evaluation

In this chapter, we describe how we evaluated the performance impact of running a
BERT model inside a Trusted Execution Environment (TEE). Our main goal was to
measure the overhead introduced when SEV-SNP encryption is enabled, compared to
a baseline that runs without TEE. We explain the experimental setup, the hyperpa-
rameters tested, and the performance metrics tracked for both training and inference.
Finally we conclude with a discussion on our findings and related work.

6.1 Setup

Our experiments ran on an AMD EPYC 9364 server node equipped with 32 cores at
3.8GHz, 768GB of RAM, and up to 100Gbit/s network interfaces. This hardware sup-
ports AMD SEV-SNP [12], [83], providing transparent memory encryption inside virtual
machines for confidential execution. We enabled SEV-SNP at the BIOS and operat-
ing system levels and deployed Kata Containers to encapsulate our workloads within
secure, lightweight VMs [13], [83]. The TEE mode was determined by selecting the ap-
propriate configuration file: kata_config: ’kata-configuration-snp’ for TEE on,
and kata_config: ’kata-configuration-default’ for TEE off [87]. Apart from this
configuration switch, the rest of the software stack (Linux kernel, QEMU, containerd,
etc.) remained identical, enabling a controlled comparison of encryption, attestation,
and enclave initialization overhead.
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6.2 Model Selection

We selected a BERT encoder-only model containing roughly 110million parameters [73].
Despite its considerable size, it remained manageable for CPU-based training while still
being representative of modern transformer-based architectures. Specifically, we used
a 12-layer BERT variant with a hidden size of 768, taking advantage of PyTorch and
Hugging Face Transformers libraries for straightforward loading and fine-tuning [73],
[88], [89].

For our dataset, we turned to the GLUE benchmark’s MRPC (Microsoft Research Para-
phrase Corpus). MRPC consists of sentence pairs manually annotated as to whether
they convey the same meaning (paraphrase) or not [91]. We tokenized each sentence pair
with a BERT tokenizer at a maximum sequence length of 128 tokens, then stored these
tokenized samples on disk [73], [92]. This setup allowed a seamless, immediate load
of training and inference batches without excessive preprocessing overhead. The ap-
proach and code were adapted entirely from open-source libraries (e.g., Hugging Face’s
datasets, transformers, and PyTorch) [88], [89].

In practice, BERT uses self-attention layers to capture contextual relations between
tokens, effectively handling tasks such as paraphrase detection. For instance, if the two
sentences “The weather is nice today.” and “It’s a beautiful day outside.” are fed into
the model, it will label them as semantically equivalent—i.e., true for paraphrase.

6.3 Running Training

In training, we varied the batch size among 8, 16, 24, and 32 examples and examined
runs with either 1, 3 or 6 epochs. Each epoch was further segmented into⌈

N

B

⌉
iterations [36], [69], [84], [85], with each iteration performing forward and backward
passes on one mini-batch, as already explained in Chapter 4. We tracked metrics such
as time to first training step(TTFTS), tokens per second, per-iteration latency, overall
training time, and model convergence. By performing these runs in both TEE and non-
TEE modes, we isolated the additional latency and throughput impact from confidential
computation features [93].
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6.4 Training results

Batch size training time
TEE on

training time
TEE off

TPS TEE on TPS TEE off

8 4746.15s 4117.57s 296.77 342.07
16 4529.78s 3906.92s 310.95 360.52
24 4462.21s 3850.10s 315.65 365.84
32 4441.98s 3833.60s 317.09 367.41

Table 6.1: Training time and throughput (TPS) for different batch sizes over 3 epochs comparing TEE
on and TEE off.

6.4 Training results

Time To First Training Step(TTFTS): Across all batch sizes (8, 16, 24, 32), the
TEE-on configuration consistently increases TTFTS by roughly 15–20% (17.71% on
average). For instance, at a batch size of 8, TTFTS is 4738ms with TEE on vs. 4012ms
without TEE—an overhead of about 17%. This additional delay comes from initializing
the confidential computing environment. Enabling SEV-SNP means all memory pages
used by the virtual machine must be encrypted and decrypted transparently. even
though the encryption process benefits from specialized hardware features (which help
make encryption and decryption faster), there is still a setup cost for establishing the
secure pages prior to the first training step. Before execution, the VM may also need to
perform attestation, which proves to a remote or local authority that the environment
is secure and unmodified. This handshake can add extra latency to the startup phase.
SEV-SNP requires additional coordination between the hypervisor (QEMU) and the
AMD Secure Processor. This adds overhead before any actual workload can begin. All
these factors compound at the very beginning, so TTFTS is visibly higher in TEE mode.
Once the system has been initialized most of the extra delay observed during training or
inference arises from the continuous processes—like encrypting and decrypting data in
memory and the associated system interactions—rather than from that initial setup [36],
[37], [41].

Total Training Time: Training overhead averages in the 15% range when comparing
TEE on vs. TEE off, regardless of the number of epochs (1, 3, or 6). For example, with
one epoch and a batch size of 8, total training time is 1589s (TEE on) vs. 1382s (TEE
off), about a 15% difference. Even at larger batch sizes (e.g., 32), the overhead stabilizes
around 13–15%. As epochs increase (from 1 to 6), the absolute training time naturally
grows, but the percentage overhead due to TEE remains relatively consistent. During
each forward/backward pass, the model’s parameters and intermediate activations are
read from and written to encrypted memory. Although modern processors accelerate
these operations, the extra encryption still slows memory throughput slightly. Running
inside a TEE can introduce extra context-switch overhead between the guest VM and
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the hypervisor, especially if system calls or I/O operations are frequent [62]. In our
exepriment, the tokenized training and validation datasets are loaded at the beginning
using. This operation is performed only once and its cost is amortized over the entire
training run. Once the datasets are loaded, the DataLoader iterates over the in-memory
data. There are no repeated, heavy disk reads within the training loop—each batch is
prepared in memory and then transferred to the device [73], [92]. This minimizes any
ongoing I/O delays. Also, when the environment is set up, each additional epoch faces
roughly the same level of overhead, leading to a steady percentage difference across 1,
3, or 6 epochs [26], [36], [37], [41].
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Figure 6.1: Training Time Epochs Comparison.

Tokens per Second(TPS): TEE-enabled runs achieve 10–15% lower TPS (i.e., through-
put) than TEE-disabled runs. The gap is obvious at all epoch counts and batch sizes.
For a single epoch with a batch size of 32, TPS reaches 317 tokens/s in TEE vs. 366
tokens/s without TEE( 13% drop). Throughout each training step, repeatedly read-
ing/writing large parameter tensors from encrypted memory slightly delays raw data
bandwidth. Under SEV-SNP, certain hardware optimizations (caching, prefetching)
may be slightly less effective when every memory page is encrypted, resulting in lower
sustained throughput. BERT training often moves large amounts of data between CPU
and memory. Since memory encryption is a dominant factor here, we see an overall
10–15% throughput loss [26], [36], [37], [41].
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6.5 Running Inference

Per-iterarion Latency: Our training logs also showed that TEE-on runs often record
slightly longer step times per mini-batch compared to TEE-off. For example, with batch
size 8, TEE-on step times are frequently around 3.45–3.50s, whereas TEE-off is closer
to 3.00s—about a 15% overhead. Similarly, for batch size 16, the TEE-on step times
of roughly 6.55–6.65s exceed the TEE-off baseline of around 5.70s by a similar margin.
This direct measurement of per-batch iteration time confirms that encryption and other
TEE-related processes introduce a steady, ongoing overhead on each forward/backward
pass, aligning with the 10–15% throughput gap observed in our other metrics [47].

8 16 24 32
Batch Size

0

2

4

6

8

10

12

14

16

Tr
ai

ni
ng

 T
im

e 
Ov

er
he

ad
 (%

)

1 Epoch
3 Epochs
6 Epochs

Figure 6.2: Training Time Performance Penalty

6.5 Running Inference

During inference, we maintained the same batch size range (8, 16, 24, 32) to investigate
overhead under different query-concurrency conditions. We measured Time to First
Token (TTFT), Inter-Token Latency (ITL), Tokens per Second (TPS), and Queries per
Second (QPS), providing a detailed view of response times and throughput. Comparing
these metrics between TEE-enabled and TEE-disabled runs enabled us to quantify the
performance trade-offs of secure inference [93].

39



Chapter 6: Evaluation

Table 6.2: Inference with 3 Epochs

Batch size TTFT ITL TPS QPS Latency
TEE on TEE off TEE on TEE off TEE on TEE off TEE on TEE off TEE on TEE off

8 232.94 ms 184.77 ms 0.01 ms 0.01 ms 469.22 tok/s 592.04 tok/s 30.55 q/s 38.54 q/s 233.82 ms 185.32 ms
16 293.15 ms 262.08 ms 0.01 ms 0.01 ms 653.58 tok/s 731.08 tok/s 42.55 q/s 47.60 q/s 293.76 ms 262.62 ms
24 427.77 ms 371.65 ms 0.01 ms 0.01 ms 597.53 tok/s 687.78 tok/s 38.90 q/s 44.78 q/s 428.43 ms 372.21 ms
32 571.88 ms 487.85 ms 0.00 ms 0.00 ms 670.68 tok/s 786.15 tok/s 43.66 q/s 51.18 q/s 572.55 ms 488.46 ms

6.6 Inference Results

Time to First Token (TTFT): The TEE-on configuration consistently increases
TTFT by 15–30% depending on batch size. Smaller batches can exhibit a slightly
higher percentage overhead, because the absolute cost of the TEE setup is amortized
over fewer tokens. For example, at batch size 8, TTFT can jump from 188ms (TEE off)
to 274ms (TEE on), roughly a 46% difference in that specific case. However, for larger
batches (e.g., 32), the gap narrows to around 15–20%. Just as in TTFTS for training,
the environment must decrypt and load all necessary model weights into secure memory
[47]. For inference, that means there’s a short but noticeable overhead before generating
the first token. Smaller batches have fewer tokens to distribute that overhead across.
The overhead looks larger as a percentage with batch size 8, but for batch size 32, the
same overhead gets “spread out,” causing a lower relative impact [62].
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6.6 Inference Results

Tokens per Second (TPS) and Queries per Second (QPS): As with training
throughput, inference throughput (TPS/QPS) with TEE shows about a 10–15% de-
crease across various batch sizes. For batch size 32, TPS is 675–700tokens/s in TEE
vs. 780tokens/s without TEE, translating to roughly 11–13% overhead in steady-state
generation speed. QPS follows a similar pattern, indicating that when running many
inference queries in parallel, TEE-on throughput drops by around 10–15% compared
to TEE-off. Inference repeatedly runs forward passes on the model—the process in
which input data is fed through the neural network (layer by layer) to compute the
output predictions [62], [73]. Each pass deals with large embeddings and attention
matrices that must be encrypted/decrypted. Since BERT is relatively large and we’re
running on CPUs, memory bandwidth—especially encrypted bandwidth—becomes a
bottleneck. Even if the queries were parallelized, each thread or process would still
operate on encrypted data, so the total overhead would scale with the number of con-
current requests [73].
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Figure 6.4: TPS Epochs Comparison.

Inter-Token Latency (ITL): The measured inter-token latency shows only minor
differences—often just hundredths of a millisecond. Once the first token is generated,
much of the model context and memory pages are “already active” in encrypted memory.
The additional encryption overhead from token to token is therefore incremental. If the
encrypted pages remain in cache, the penalty for reading/writing them each time is
lower, reducing the visible ITL. Our encoder-only BERT model processes all tokens at
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once, so after the initial setup, the extra encryption cost per token is minimal and barely
affects ITL [62], [73].
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Figure 6.5: Epochs Comparison Summary

6.7 Discussion

Interestingly, the TEE-based run at batch size 24 shows slightly lower throughput than
batch size 16. This non-monotonic behavior can come from how encryption overhead,
memory alignment, and kernel utilization do not always scale smoothly with batch size.
Certain intermediate sizes may suffer from extra setup or alignment costs that outweigh
the benefits of larger batches in a TEE environment [62].

Most prior work on TEE-based machine learning either leverages Intel SGX-like enclaves
(with strict memory limits) or GPU-based TEEs such as NVIDIA H100/H200 with Intel
TDX or AMD SEV SNP for accelerated deep learning [26], [62], [63]. Our experiment
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6.7 Discussion

is distinct in that it exclusively uses AMD SEV-SNP on CPUs, without GPU offload-
ing [26]. Consequently, the overhead patterns we observe—around 10–16% for training
and inference—differ from the often higher or more complex overheads reported when
GPU data transfers, multi-node communication, or very limited enclave memory come
into play. From the related studies, we can identify three main bottleneck categories for
TEE-based machine learning:

1. Limited Secure Memory Encryption Overheads: Many Intel SGX-based
works [47], [52] report severe slowdowns (up to 26×) once enclaves must page data
in and out of their limited protected region. Our setup bypasses this bottleneck
by leveraging SEV-SNP at the VM level, backed by 768GB of RAM. Hence, we do
not observe drastic paging or memory-thrashing overhead. Still, encryption of all
memory is the fundamental driver of our measured 10–15% overhead, aligning with
other CPU TEE findings [37], [41]. Unlike pipeline-optimized GPU TEEs [61],
[63], we do not mask encryption costs with asynchronous GPU computation. Our
overhead thus emerges in each forward/backward pass, as large parameter tensors
are read and written through encrypted memory.

2. I/O and Communication Bottlenecks (CPU–GPU, Network, Storage):
Studies focusing on GPU TEEs [26], [62] show that encrypting high-bandwidth
PCIe traffic can impose overheads of 7–85%, depending on the volume and fre-
quency of transfers. Similarly, multi-node or federated setups must handle re-
peated encryption of gradients, parameters, and remote attestation steps [29],
[34], [39]. In contrast, our single-VM CPU-only workload involves minimal ex-
ternal I/O beyond initial data loading, so we do not see major communication
overhead. After the tokenized MRPC dataset is loaded from disk, each batch is
prepared and processed in memory, limiting I/O-bound slowdowns. This explains
why overhead remains consistently around 10–15%, rather than spiking higher
under heavy data transfers.

3. Scalability Challenges for Multi-Threaded or Multi-Tenant Environ-
ments: Many TEE studies emphasize overhead from context switches, enclave
transitions (ecalls/ocalls), or multi-tenant resource contention [33], [37], [39]. For
instance, Intel TDX VMs can encounter frequent VM exits, while AMD SEV-SNP
uses a Reverse Map Table (RMP) that must validate every page fault [62], [63],
[83]. In our experiments, we run a single-tenant workload in a dedicated SEV-
SNP VM. We neither stress the system with multiple enclaves nor saturate it with
heavy multi-thread concurrency. Consequently, the overhead from TEE-specific
context switching is visible but not amplified by multi-tenant competition.

43



Chapter 6: Evaluation

Overall, our analysis shows that CPU-based SEV-SNP overhead is primarily driven
by memory encryption, with a stable 10–16% performance penalty for training and
inference in a single-VM, CPU-only TEE environment. This is considerably lower than
the slowdowns seen in smaller enclaves (such as Intel SGX). Our work, therefore, fills
a gap by empirically measuring AMD SEV-SNP overhead without GPU offloading,
confirming that modern CPU TEEs can support small-scale transformer training with
manageable slowdowns when enough memory is available. It further confirms that
memory encryption is the main overhead source—as noted in previous findings [36],
[47], [52]—while I/O and multi-tenant overheads found in other studies [62], [63], [83]
are not major factors in our CPU-centric scenario.
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Chapter 7

Conclusion

This chapter briefly indicates where the research questions posed in Chapter 1 are ad-
dressed in this thesis, followed by concise remarks on potential future research directions.

7.1 Answers to Research Questions

RQ1: (“Which phases of the AI model lifecycle are most vulnerable, and how effectively
can TEEs protect each?”) Answered in Chapter 3, where we identify threats at each
stage of the AI lifecycle and discuss how TEEs either mitigate or fail to mitigate these
threats.

RQ2: (“How do TEE security guarantees impact the complexity of implementing and
maintaining AI model deployments?”) Covered in Chapter 3 and Chapter 6, with
a focus on how memory encryption, enclave initialization, and potential changes in
infrastructure increase operational complexity.

RQ3: (“Which attacks remain viable against TEEs even with current security mech-
anisms?”) Explored in Chapter 3, which clarifies various software-, hardware-, and
algorithmic-level attacks that TEEs cannot fully block, such as adversarial examples or
malicious data poisoning.

RQ4: (“What methodology can be used to evaluate security and performance of TEE-
enabled AI workflows?”) Outlined in Chapter 3 (analysis), Chapter 4 (experiment
design) and detailed through the Chapter 5 (implementation), where metrics (latency,
throughput, overhead) are defined and measured under TEE vs. non-TEE modes.



Chapter 7: Conclusion

RQ5: (“What performance-security trade-offs emerge in TEE-protected LLM deploy-
ments, and how can they be optimized?”) Quantified in Chapter 6, which presents
empirical results showing overhead (10–16% in our setup) and the factors (memory
encryption, batch size, etc.) that can be tuned for better performance-security balance.

7.2 Future Work

Extending TEE protection to additional accelerators (e.g., NPUs, FPGAs, TPUs) and
refining side-channel defenses remain key research goals to further secure large-scale
Al deployments. Equally important is advancing adaptive encryption strategies that
reduce overhead in multi-tenant or distributed systems, ensuring robust data protection
without sacrificing efficiency.
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